David Thouless, Duncan Haldane, y Michael Kosterlitz, galardonados con el premio Nobel este año han utilizado métodos matemáticos avanzados para explicar fenómenos de la materia como superconductores, superfluídos o películas magnéticas delgadas. Kosterlitz y Thouless han estudiado fenómenos que surgen en superficies extremadamente delgadas que se pueden considerar dos dimensiones, en comparación a las tres dimensiones (ancho, largo y alto) con la que generalmente se describe la realidad. Haldane también ha estudiado la materia que forma hilos tan delgados que pueden considerarse unidimensionales.

La física que tiene lugar en tales espacios es muy diferente a la que reconocemos en el mundo que nos rodea. Incluso si la materia esta finamente distribuida en millones de átomos, el comportamiento de cada átomo puede ser explicado usando la física cuántica, pero los átomos tienen propiedades completamente diferentes cuando muchos de ellos se unen. Nuevos fenómenos colectivos están siendo descubiertos en estos campos y la física de la materia condensada es ahora uno de los campos más innovadores de la física.

Los conceptos de física topológica han sido decisivos para sus descubrimientos. La topología es
una rama de las matemáticas que describen las propiedades de la materia basados en cambios graduales. Con la topología moderna como una herramienta, los laureados de este año han presentado resultados sorprendentes, que han abierto nuevos campos de investigación y llevado a la creación
de nuevos e importantes conceptos dentro de varias áreas de física.

La física cuántica se hace visible en el frío

En el fondo, toda la materia se rige por las leyes de física cuántica. Los gases, líquidos y sólidos son los habituales estados de la materia, en la que los efectos cuánticos son a menudo ocultos por movimientos atómicos aleatorios. Pero cuando están cerca del cero absoluto frío (-273 grados Celsius) se comportan de maneras inesperadas. La física cuántica, que de otro modo sólo funciona en el mundo a microescala, se convierte de repente visible.
La materia a altas y bajas temperaturas asume exóticos estados. Créditos: Nobel Foundation.

En las fases ordinarias de la materia la transición entre uno y otro estado es debido a la temperatura, por ejemplo, tal transición de fase se produce cuando el hielo, que no es más que cristales bien ordenados, se calientan y se funde en el agua, una fase más caótico de la materia. Cuando nos fijamos en la materia que está en los límites de la temperatura, nos encontramos con fases que aún no se han explorado completamente. Cosas extrañas suceden en el frío. Por ejemplo, la resistencia encontrada en todas las partículas que se mueven de repente cesa. La corriente eléctrica fluye sin resistencia en
un superconductor, o un vórtice en un superfluido gira constantemente sin disminuir la velocidad.

La primera persona en estudiar sistemáticamente los superfluidos fue el ruso Piotr Kapitsa, en la década de 1930. Estudió helio-4, que se encuentra en el aire, a -271 grados Celsius, y encontró que se comportaba como un superfluido cuando su viscosidad desapareció completamente. Kapitsa fue recompensado con el Premio Nobel de Física en 1978, y desde entonces varios tipos de superfluidos se han creado en el laboratorio. Helio superfluido, películas delgadas de superconductores, capas delgadas de materiales magnéticos y nanohilos conductores de electricidad son algunas de los
muchas nuevas fases que ahora están siendo estudiadas intensivamente.

Las parejas de vórtices son la solución

Los investigadores creían que las fluctuaciones térmicas destruían todo el orden en la materia en una o dos dimensiones, incluso en el cero absoluto. Si no hay fases ordenadas, no puede haber transiciones de fase. Sin embargo, a principios de 1970, David y Michael Thouless Kosterlitz se reunieron en Birmingham, Gran Bretaña, y desafiaron la teoría vigente en ese momento. Juntos abordaron el problema de las transiciones de fase dando lugar a una nueva comprensión de las transiciones de fase, que se considera como uno de las descubrimientos más importantes del siglo XX en la teoría de la física de la materia condensada. Fue llamada transición KT (Ttransición Kosterlitz-Thouless) o la transición BKT, en el que B es para Vadim Berezinskii, un físico teórico ya fallecido de Moscú que había presentado ideas similares.

La transición de fase topológica no es una transición de fase normal, como la que existe entre hielo y agua. El papel principal de una transición topológica es realizado por pequeños vórtices en materia plana. A bajas temperaturas forman vortíces estrechos. Cuando la temperatura sube, una transición de fase se lleva a cabo: la vórtices de repente se alejan unos de otros y de frente.
Usando la topología Kosterlitz y Thouless describieron la transición de estados en una delgada capa de material a baja temperatura. A temperaturas bajas se forman parejas vórtices que se separan al aumentar la temperatura. Créditos: Nobel Foundation.
Lo maravilloso de esta teoría es que se puede utilizar para diferentes tipos de materiales de pocas
dimensiones, la transición KT es universal. Se ha convertido en una herramienta útil, que no sólo se aplica en el mundo de la materia condensada, sino también en otras áreas de la física, como la física atómica o estadística mecánica. La teoría detrás de la transición KT también ha sido desarrollado por dos de sus creadores y otros, que la han confirmado experimentalmente.

Los misteriosos saltos cuánticos

Los experimentos provocaron una serie de nuevos estados de la materia que requerían explicación. En la década de 1980, tanto David Thouless como Duncan Haldane presentaron trabajos teóricos que desafiaron las teorías anteriores, uno de estos trabajos fue la teoría de la mecánica cuántica
que determinaba qué materiales conducen la electricidad. Esta teoría se había desarrollado en 1930 y, un par de décadas más tarde, se consideró en esta área de la física.

Por lo tanto, fue una gran sorpresa cuando, en 1983, David Thouless probó los datos eran incompletos puesto que a bajas temperaturas y en campos magnéticos fuertes, un nuevo tipo de teoría era necesaria, una donde los conceptos topológicos fueron vitales. Aproximadamente al mismo tiempo, Duncan Haldane también llegó a una idea similar, al analizar cadenas atómicas magnéticas. Ambos trabajos han sido fundamentales en los acontecimientos posteriores a la teoría de los nuevos estados de la materia.

El fenómeno misterioso que David Thouless describió en teoría, usando topología, es el
efecto Hall cuántico. Fue descubierto en 1980 por el físico alemán Klaus von Klitzing, quien
fue recompensado con el Premio Nobel en 1985. Klaus estudió una capa conductora delgada entre dos semiconductores, donde los electrones se enfriaron a unos pocos grados por encima del cero absoluto estando sometidos a un fuerte campo magnético.


En física, no es raro que sucedan drásticas cosas cuando baja la temperatura; por ejemplo, muchos materiales se vuelven magnéticos. Esto sucede porque los átomos giran en la misma dirección, dando lugar a un fuerte campo magnético, que puede también ser medido.

Sin embargo, el efecto Hall cuántico es más difícil de entender; la conductancia eléctrica en
la capa aparece sólo para ser capaz de asumir valores particulares, que son también extremadamente precisos, algo que no es habitual en física. Las mediciones proporcionan exactamente los mismos resultados, incluso si la temperatura, el campo magnético o la cantidad de impurezas en el semiconductor varían. Cuando el campo magnético cambia lo suficiente, la conductancia de la capa también cambia, pero sólo en fases; la reducción de la fuerza del campo magnético hace que la conductancia eléctrica cambie, primero exactamente al doble, entonces se triplica, cuadruplica, y  sucesivamente. Estos pasos no pueden ser explicados por la física conocida en el momento,
pero David Thouless encontró la solución a este enigma utilizando topología.

La respuesta esta en la topología

Topología describe las propiedades que permanecen intactas cuando un objeto se estira, trenzado o deformado pero no si está desgarrado. Topológicamente, una esfera y un tazón pertenecen a la misma categoría, porque una protuberancia esférica de arcilla se puede transformar en un recipiente. Sin embargo, una dona y una taza de café con un agujero en el mango pertenecen a otra categoría; aunque también pueden ser remodelados para formar objetos. Objetos topológicos pueden contener así un agujero, dos, tres, o cuatro... pero este número tiene que ser un número entero. Esto resultó ser útil en la descripción de la conductancia eléctrica que se encuentra en el efecto Hall cuántico, que sólo cambia en pasos que son múltiplos exactos de un número entero.
La topología es una rama de las matemáticas que se interesa por estudiar las propiedades que cambian en la materia paso por paso. Fue clave en los descubrimientos de física y ayudo a explicar porque la conductividad cambia en el interior de capas delgadas a números enteros. Créditos: Nobel Foundation.

En el efecto cuántico Hall, los electrones se mueven con relativa libertad en la capa entre los semiconductores y forman algo que se llama un fluido cuántico topológico. De la misma manera como nuevas propiedades a menudo aparecen cuando muchas partículas se juntan, los electrones en el fluido cuántico topológico también muestran características sorprendentes. Pero así como no se puede determinar si existe un agujero en una taza de café con sólo mirar a una pequeña parte de ella, es imposible determinar si los electrones han formado un fluido cuántico topológico si solo se observa lo que está sucediendo a algunos de ellos. Sin embargo, la conductancia describe el movimiento colectivo de los electrones y, debido a la topología, que varía en pasos; es cuantificada. Otra característica del fluido cuántico topológico es que sus fronteras tienen inusuales propiedades. Estos fueron predichas por la teoría y más tarde se confirmaron experimentalmente.

Otro hito se produjo en 1988, cuando Duncan Haldane descubrió en fluidos cuánticos topológicos, que se pueden formar delgadas capas de semiconductores incluso cuando no hay ningún campo magnético. En 2014 su modelo fue validado en un experimento utilizando átomos que a temperaturas similares al cero casi absoluto.

Los nuevos materiales topológicos

A partir de 1982, Duncan Haldane hizo una predicción que sorprendió incluso a los expertos en el campo. Analizando cadenas de átomos magnéticos que se producen en algunos materiales, descubrió que las cadenas tenían diferentes propiedades dependiendo de los átomos imanes. En la física cuántica, hay dos tipos de imanes atómicos, pares e impares. Haldane aseveró que una cadena formada de imanes pares es topológica, mientras que una cadena de imanes impares no lo es. En un fluido cuántico topológico, no es posible determinar si una cadena atómica es topológica o no estudiando una pequeña parte de ella. Y, al igual que en el caso del fluido cuántico, la propiedades topológicas se revelan en los bordes.

Al principio, nadie creía que el razonamiento de Haldane sobre las cadenas atómicas; los investigadores estaban convencidos de que que ya se conocían sus propiedades con exactitud. Pero resultó que Haldane había descubierto el primer ejemplo de un nuevo tipo de material topológico, que es ahora un campo animado de la investigación en la física condensada de la materia

Ambos: fluidos cuánticos y cadenas atómicas incluso magnéticas se incluyen en este nuevo grupo de estados topológicos. Más tarde, los investigadores descubrieron varios otros estados topológicos inesperados de la materia, no sólo en cadenas y capas delgadas de materia, sino también en materiales tridimensionales ordinarios.

Aislantes topológicos, superconductores topológicas y metales topológicos son ejemplo de ellos. Estos son ejemplos de materiales que durante la última década, han definido la investigación de la física de materia condensada, no menos importantes, debido a la esperanza de que los materiales topológicos serán útiles para las nuevas generaciones de la electrónica y superconductores, o en los futuros ordenadores cuánticos. La investigación actual está ahora revelando los secretos de la materia en las llanuras exóticas descubiertas por los Premios Nobel de este año.